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Abstract. This work presents a computational methodology for Boundary Element Methods
(B.E.M.) using a vectorial and hypersingular formulation to 2D potential problems (heat
transfer, fluid transfer, sound, percolation etc.) applying the Galerkin technique and linear
elements to calculate the potential, the normal derivative and the tangential derivative. The
hypersingular formulation can furnish the tangential derivative directly, which can be useful
when one want both the normal and tangential derivatives in order to obtain the resultant
flux. Although had been subject of intensive studies the hypersingular formulation until has
vary conceptual aspects not totally explored and a methodology not experimented. Here is
studied the use of Galerkin technique and a vectorial  formulation showing that the increase
of work with double integration is compensated by less singularities in the first integration
and none in the second.
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1.INTRODUCTION.

B.E.M. is a computational method for several engineering problems and have developed
largely the last years. The use of the hypersingular formulation is more recent and was used by
Bézine 1976 and Stern 1978 to study plate bending. More recently it has been used as a
alternative for the classic formulation or as a combination of both formulations (Ingler and
Rudolph 1990, Telles and Prado 1993) or as an alternative for sub-regions in mechanical
fracture analysis (Telles and Guimarães 1994) . Those works used the point collocation
technique. The use of Galerkin method in hypersingular formulations is even more recent



mostly due to L. J. Gray (1996 and others in press), for specific problems combining classical
and hypersingular Galerkin formulations together, covering each one part of the boundary
which was called  symmetric Galerkin.  Fleury and others (1998) presented a formulation and
results for the Galerkin method applied to hypersingular BEM 2D using constant and
discontinuous linear elements to obtain the potential and the normal derivative. The basic
formulations used were taken from the collocation method for a vectorial hypersingular
formulation developed by Mansur and others  (1997). The Galerkin method needs a double
integration. Singularities problems in the first integration are less than in the collocation
method as the source points are never in the corners. In the second integration there are no
singularities anymore.

Some applications are presented, with results and compared with others obtained with
classic and hypersingular formulations using collocation point. Results are discussed and
analyzed in other to choose better methods in each case and in order to clarify some
conception aspects.

2. METHOD

The method is very similar to the collocation point method and the classical
formulation of Galerkin method. The difference to the collocation point is that there is another
integral do be made over the source element. We can follow the usual steps as the collocation
point but having in mind that there is no single source point and that the second integral will
create double coefficients for each single point. By the other hand the point in the extreme of
each source element do not represent a source of singularities to integrate the just next
element field.
Below is the weighted hypersingular  vectorial formulation for the normal derivative:
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And for the tangential derivative has the below formulation:
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Where:  W is the weight functions , Cf(pn, pt) represents the free terms, s is the source
point ordinates, and  x the field ones,  r  is the distance between  s and x, ν is a unity vector
pointed from s to  x,  n(x)  is the unity normal vector in x,  n(s) is the unity normal vector in s,
u(x) is the potential in x, u(s) is the same in  s, pn(x) is the normal derivative of u(x)  , pt(x) is
the tangential derivative of u(x), Γx denotes the boundary, Γs is the sourse element. VP
indicates that this integral can be singular. And:
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The Γx and Γs coordinates are changed to η and η’ local coordinates so dΓx = lj/2 dη
and dΓs = li/2 dη'. Classically we have two functional points for each element, two



interpolation functions φ1(η) e φ2(η) related to them and two weight functions φ1(η’) e
φ2(η’) related with the points of the source element. The  interpolation and weight functions
are :
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The interpolated variables take the form:
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Where j denotes the field, i the source, 1 to the first point element, 2 to the second,
η the local ordinate, η’ the source local element ordinate. We can consider all points inside
the elements when calculating, because we are going to use Gauss points and the extreme
points are, by this way,  not relevant. So the free term becomes 0,5pn (s ) for the normal
formulation and 0,5pt(s) for the tangential one:

[ ] 0
22

50
2

21
1

1

1

1

1

1

=













−−+ ∫ ∫∫

+ +

−

+

−
'dd

lj
)x(p)x,s(ud

lj
)s(u)x(u)x,s(p)s(p,

li
)'()'(

_
n

*
n,

*
n,nn

T ηηηηφηφ

                                                                                                                                                  (5)

[ ] 0
22

50
2

21
1

1

1

1

1

1

=













−−+ ∫∫∫

+

−

++

−
'dd

lj
)x(p)x,s(ud

lj
)s(u)x(u)x,s(p)s(p,

li
)'()'( n

*
t,

_

*
t,nt

T ηηηηφηφ

                                                                                                                                        (5A)

li/2 is constant for each source element and can be eliminated.
Integrals can been made separately and give the below coefficients:

2.1 - For the free terms (using p for pn or pt ) and indicating 1 for φ1 and 2 for φ2  :
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which integrated are:
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There are two coefficients for p(s)1i and two for p(s)2i

2.2 - For the coefficients that multiplies pn we have, for the no singular integrals:

Developing equation (5) or (5A) we can see that we have more than one coefficient for each
point and we have to add them, as explained below:
From equation (5) the AGs, coefficients of pn , are calculate by the Gauss method. As an
example when the weighting function is φ1(η’) we have:
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The integrals can be made by parts indicating the results by coefficients using as indices the
number 1 when was used φ1(η) and 2 when was used φ2(η). As a example one can do the first
integration using some point located in the field element denoted by k  :
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      The second integration is made, also using Gauss method and using 1and 2 for φ1(η’) and
φ2(η’):
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and so on for the others coefficients AG(1,2),AG(2,1) and AG(2,2).
Here we notice that there is four coefficients for each derivative instead of two when

collocation point is used.
Be a element number 4 which has point 4 at the left and point 5 at the right side.

Taking point 5 of element 4, as an example, we can see that it will have four coefficients. Two
coefficients when the integration of its interpolation function at the left side will be integrate
again, once with φ1(η’) and also with φ2(η’). The same will happen with the integration with
its interpolation function at the right side (in element 5). Because of this double integration we
will have four coefficients that have to be added as they refer to the same derivative at point 5.
By the other hand if point 4 of element 4 is in a corner it will be treated as a double point and
only have a interpolation function and its coefficient will be compound only by two terms.

After those summation we can indicate the coefficients by G(1,1), G(1,2), G(1,3) …
for the ones obtained for the first matrix line (when the element 4 is the source) and so on.

This operation has to be done for all type of coefficient as AF, AH, AE, AC and AD
which after the summations became F, H, E, C and D .

 From equation (5A), following the same sequence, for the no singular terms we have:
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2.3 - For the terms that multiplies u(x) and -u(s)
The same operation is done for the coefficient that multiplies u(x) and are not singular. As
example using the weighting function φ1(η’):
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and so on for the others, AH(1,2), AH(2,1),AH(2,2) and AE(1,2),AE(2,1),AE(2,2).
The coefficient that multiplies the potential value of the first source point -u1i(s) is :
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and for the second u2i(s) :
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Integrated by the Gauss method
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and so on for the others. Observe that those coefficients appears in all elements integrals
because of the [u(x)-u(s)] term. All coefficient ACs related to the same source have to be
added together and then subtract from the terms of the principal diagonal of the H matrix
(H(i,i)) whose terms are related to the same derivative value. The same is done for all
coefficients ADs  and them subtract from the F matrix (F(i,i)). There is another way to do this,
that is to make the subtraction of ACs and ADs from AHs and Afs before they were added and
became Hs and Fs.



2.4 - Singular integrals:

The singular integrals have to be made analytically.
When the source element is the same as the field element (j = i) we can have singularities, but
as 10 =•=• )s(n)s(n,)s(nν , 01 =•=• )s(t)s(nand)s(tν , then:
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Thus G(i,i), coefficients of pn(s), are null. They are substituted by the coefficients produced by
the free terms (B type), that also multiplies pn(s), changing the signal.
The E(i,i), coefficients of u(s), are also null.
Coefficient H when using as weighting function  φ1(η’) is:
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We substitute in equation (16) those values from equation (4) and make simplifications. To do
the first integration we divide the element in two parts: first from -1 to η’, and after from  η’
to +1. Thus the result will be a function of  η’.  The distance r between s and x in the first
region is  r=(η’−η )li/2 and in the second region is r= (η−η’)li/2. Singular parts are eliminated
using finite part  or Cauchy principal value. One have:
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      Repeating the same operation for H2C :
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The second integration has not singularities and can be integrate by Gauss method
using   η’ as k a Gauss point. Then for this coefficient we have :
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Observe that the subtraction -u(s) was included in this integration.
Repeating the same operations to find the E(i,i)  singular coefficient we find for:
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which gives:

                              ( ) ( )[ ]2)'1ln('1)1'ln(1'
4

1
1 −−+−+−= ηηηη

π
CAE                              (18A)

                                      ( ) ( )[ ]2)'1ln('1)1'ln('1
4

1
2 +−+++−= ηηηη

π
CAE                     (19A)

From those equations by a Gauss method integration as shown in equations (20) we
can have AE(1,1), AE(1,2), AE(2,1) and AE(2,2) .

Coefficients H and G are used to find all normal derivatives and all potential values.
Tangential derivative are calculated with a post -  processing program using E and F
coefficients.

3. EXAMPLE

We show two applications.
The first example is the same problem showed by Brebbia e Dominguez (1989).  A

flux of heat flow trough a squared boundary with  a side of 6 units. There is a temperature of
300 units in the left side and a temperature of zero units in the opposite side.  Trough the
laterals there is no flux. The analytic solution  is u(x)= 300(1-x/6)  trough the flux and

xu ∂∂ / is constant 50 units including nu ∂∂ /  in the borders, being negative in the entrance and
positive in the exit. nu ∂∂ /  is zero in the laterals.

The second example is made by inserting a circle with 2 units of radius centered  in the
middle of the previous squared example, thus we have a curved boundary, different normal
and tangential flux for each boundary point. The boundary will not have corners and neither
the temperature neither the flux are constant in the boundary. The boundary temperature
follows the equation u(x)= 300(1-x/6). This example is treat as a Dichlet problem.

u  =  0u  =  3 0 0

x

y

0 6

6

p n = 0

p n = 0

Figure 1 - Figure shows both examples sketch



 
Results are presented in graphics followed by comments. In all graphics the analytic result are
presented by a full line.

First example. Square boundary

C o lloca tion  po in t 0 .0 5

G ale rk in

C o lloca tion  po in t 0 .2 5

Figure 2 - This figure shows the normal derivative value in the square vertical face
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Figure 3 - This figure shows results of tangential derivative along the horizontal face.



In figure 2 scale was very enlarged to show little discrepancies. The circles represent
points obtained with the Galerkin method made with 28 points, 8 Gauss points for the second
integration, 12  Gauss points for the field integration. We can see that the presence of a corner
causes a error of 0,6% in the point located just over the corner. The x represent values
obtained with hypersingulat collocation point method, with the extremes points moved to the
interior to avoid enormous error caused by the presence of a corner. The displacement, for
collocation point method, was of 0.25 of the total element length. This method has very good
result but one do not know the derivative just in  the corner The triangles represents points of
hypersingular collocation point method where de displacement of the corners points were of
0.05. This causes a great error in those two points and also create error in all other points.

Figure 3 is also enlarged.  The same representation was used. Points not in the
extremes result very close to the analytic In the corners, again, Galerkin hypersingular method
has some error just over the corner point. The collocation point with corner points moved 0.25
inner to the element has better result but has no value for the corner point. The collocation
point with corner points moved 0.05 has not so god results and the bad effects of the corner
make the inner points also worst.

Second example. Circle boundary.

0 .00 2 .00 4 .00 6.00 8 .00
-80 .00

-40 .00

0.00

40.00

80.00

A na litica l

C lassica l G ale rkin

H ypersingu lar G a le rkin

Figura 4 -This figure shows the result of normal derivative in the circle boundary. In vertical
axis are the normal derivative values, in horizontal axis are the angle values in rad.

Figure 4 shows the analytical results in a full line, little circles represents results with a
classical Galerkin formulation and little crosses represents results with hypersingular Galerkin
formulation. Results, without the descontinuity caused by corners are exact, making difficult
to see the crosses inside the circles.



Results for tangential derivative in the boundary circle are also good for both
problems, as there are no corner discontinuities.

4.CONCLUSIONS

Results show that the Galerkin method is so good as the collocation point. In the corners as in
other methods Galerkin method is not able to compensate the discontinuity of the gradient
potential, but with better results. Do not treat the extremes points of the source elements as a
singularity source for the contiguous elements makes no difference for the results, when the
points are not to close to each other. Better results for the corner points for collocation point
probably could be obtained using the special corner equations show by Mansur and others
1997 and for Galerkin method using Telles coordinates transformation 1993.
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